近兩年,3C手性耦合芯光纖被越來越多的提及,頻繁地出現(xiàn)在各類期刊文章當中,成為光纖激光器件家族中被重點關注的對象。為什么與雙包層、三包層光纖相比,3C光纖會同樣備受關注?是什么樣的結(jié)構(gòu)賦予之怎樣的光學特性?今天咱們就一起來認識和了解一下3C手性耦合芯光纖。
手性(Chirality or Handedness)是一個幾何概念,它是指物體所具有的經(jīng)由平移、旋轉(zhuǎn)等任何實的空間操作都無法與其鏡像相重合的性質(zhì),這種性質(zhì)與物體本身的對稱性缺失有關系??梢孕蜗蠖唵蔚恼f,手性即是物體可以用手來表征的性質(zhì),因此也被稱為手征性。手性體是具有手性的物體,典型的代表是螺旋和扭結(jié)狀物體,手性體可以是三維的也可以是二維的。手性體的尺度可大可小,它可以是宏觀物體如星系、星云等,也可以是 DNA、氨基酸等微觀分子。圖 1-1 給出了兩個手性體的例子,分別是法國蝸牛和具有雙螺旋結(jié)構(gòu)的 DNA 分子[1]。
圖1. 法國蝸牛和具有雙螺旋結(jié)構(gòu)的 DNA 分子
根據(jù)手性體尺度與所研究電磁波波長之間的大小關系,待研究問題所涉及的手性被劃分為介質(zhì)手性與結(jié)構(gòu)手性。介質(zhì)手性是指構(gòu)成手性物質(zhì)的手性體(如手性分子)的尺寸遠小于電磁波波長,而二者可以相比擬的情況則稱為結(jié)構(gòu)手性。由介質(zhì)手性體構(gòu)成或者填充的材料稱為手性介質(zhì),由手性介質(zhì)*或者部分地替代常規(guī)介質(zhì),可以構(gòu)成手性、手性光纖、手性光子晶體和手性光柵等新型器件。相應的,在與電磁波波長可以比擬的尺度量級上,由介質(zhì)構(gòu)成手性結(jié)構(gòu)體,進而形成的器件就屬于結(jié)構(gòu)手性的范疇。典型的結(jié)構(gòu)手性器件有手性光纖光柵[3,4],平面手性結(jié)構(gòu)陣列等。圖2給出了一些介質(zhì)手性和結(jié)構(gòu)手性器件的例子,圖2(a)為介質(zhì)手性光纖(可以是包層或者芯層為手性介質(zhì),也可以是二者都為手性介質(zhì));圖2(b)為手性光纖光柵(亦被稱為結(jié)構(gòu)手性光纖),其纖芯是雙螺旋的;圖2(c)為一種平面手性結(jié)構(gòu)陣列,其手性體為二維萬字狀的微體[1]。
圖2介質(zhì)手性光纖(a)、手性光纖光柵(b)和平面手性結(jié)構(gòu)陣列(c)
手性的概念,即包含手性介質(zhì)的結(jié)構(gòu),是由N. Engheta和P. Pelet在1989 年首先提出的[3],它是由在一般的柱形中填充各向同性的手性介質(zhì)構(gòu)成,即芯層是手性的而包層是由常規(guī)材料構(gòu)成。該文中提到手性光不能獨立支持 TEM、TE 和 TM 模式,其模式是以 TE 和 TM 的耦合孿生形式存在的。這一點與傳統(tǒng)的光是不同的,因而引起了中外學者的廣泛關注并且產(chǎn)生了濃厚的興趣,他們同時也研究了手性的理論問題[4-5]。
二、手性光纖
近年來,光纖激光器及其相關技術(shù)發(fā)展迅猛,輸出功率得到較大的提高,可以達到千瓦量級以上平均功率和兆瓦量級的峰值功率,因此受到人們的廣泛關注。然而,隨著功率的提高,光纖中的光功率密度增大,受激拉曼散射(SRS)等非線性效應變得比較嚴重,這限制了光纖激光器輸出功率的進一步提升。為解決該問題,通常采用大模場面積(LMA)光纖或光子晶體光纖(PCF)來實現(xiàn)激光器的高功率輸出。然而,前者會導致高階模傳輸,只有采用正確的激勵或彎曲盤繞等模式控制方法才能實現(xiàn)單模傳輸,且對于纖芯直徑超過 25 μm 的 LMA 光纖來說,模式控制的方法很不穩(wěn)定;后者雖然能實現(xiàn)單模輸出,但在彎曲時會引起較大的模式損耗,不利于系統(tǒng)的集成化[1]。
針對上述問題,2007 年,美國 Michigan 大學超快光學研究中心提出了手性耦合纖芯3C光纖[6]的新型光纖結(jié)構(gòu),它能夠突破傳統(tǒng)單模光纖 V=2.405歸一化截止頻率的限制,在大纖芯尺寸(大于 30 μm )的情況下實現(xiàn)穩(wěn)定的單模輸出,且無需任何模式控制技術(shù)。這樣既可達到提升光纖激光器輸出功率的目的,又可以很方便地將光纖置于復雜系統(tǒng)中,實現(xiàn)光纖激光系統(tǒng)的集成化。實驗如圖所示,獲得了1066nm,37W基模光輸出。此外,3C光纖還具有模式無失真熔接和緊湊盤繞(盤繞半徑小于 15 cm)的優(yōu)點[7],與采用標準光纖熔接與處理技術(shù)制備出的光學元件相匹配。3C光纖為實現(xiàn)高峰值功率與高能量的光纖激光器系統(tǒng)提供了一種新的途徑,逐漸成為國內(nèi)外研究人員關注的熱點[1]。
圖3. 3C光纖的制備
普通光纖通常由包層和沿軸向分布的纖芯構(gòu)成,而 3C (Chirally-coupled-core)手性耦合纖芯光纖的結(jié)構(gòu),石英包層內(nèi)有兩條纖芯,一條是沿軸向分布的中央纖芯,芯徑較大,一般在30um 以上,用于信號光的傳輸;另一條是偏離中心軸、圍繞中央纖芯螺旋分布的側(cè)芯,芯徑比中央纖芯小得多,只有十幾微米,主要作用是控制中央纖芯的模式,將高階模耦合進側(cè)芯并對其產(chǎn)生高損耗(大于 100 dB/m),使得中央纖芯中的基模可以極低損耗地傳輸(小于 0.1 dB/m)。3C光纖的主要參數(shù)包含兩芯尺寸、側(cè)芯偏移量 R 和螺旋周期 Λ ,合理的 R 和 Λ 值能使側(cè)芯對中央纖芯的模式進行控制與選擇[1]。
圖4. 3C光纖的結(jié)構(gòu)
3C光纖之所以能夠在大芯徑情況下實現(xiàn)穩(wěn)定的單模傳輸,是因為其側(cè)芯特殊的螺旋結(jié)構(gòu)。這種新型光纖中側(cè)芯圍繞中央纖芯螺旋的復合結(jié)構(gòu)可以實現(xiàn)以下三方面功能。
1) 實現(xiàn)中央纖芯基模和側(cè)芯中模式的相速度匹配,使兩模式能夠進行耦合。通常兩個之間的模式耦合要滿足相速度匹配條件( β(1)= β(2))[7],但在 CCC 結(jié)構(gòu)中,由于螺旋因素的存在,兩芯中模式的傳輸常數(shù)不再相等,會導致額外的相位差,因此其匹配條件變?yōu)閇8]β side mode + Δβhelix = β(central mode) , 式中 β(central mode) 和 β side mode 分別為中央纖芯和側(cè)芯中模式的傳播常數(shù),Δβhelix = 2πn/λ[ -1]為側(cè)芯因螺旋產(chǎn)生的額外相速度,可通過 R 和 Λ 來控制,從而達到匹配條件。
2) 通過滿足準相位匹配條件,可提供中央纖芯和側(cè)芯之間有效的高階模式的對稱選擇性耦合。該QPM 條件為[9] ,
式中 為主芯中 模的傳播常數(shù), 為主芯中 模的傳播常數(shù) 為側(cè)芯的螺旋修正因子,由于 QPM 條件要求側(cè)芯傳輸常數(shù)為投射到中心軸的值,因此對 作出修正;K= 2π/Λ ,表示側(cè)芯螺旋率;Δm = Δl + Δs ,其中 Δl 由四種可能的組合構(gòu)成 Δl = ±l1 ± l2 ,而 Δs 的可能取值為-2,-1,0,+1,+2。 該公式表明,兩模式之間由于螺旋因素所產(chǎn)生的相位差被螺旋率 K 所彌補時,便可相互作用。只有滿足該 QPM 條件的兩芯中的模式才能發(fā)生耦合,使中央纖芯的高階模耦合進側(cè)芯。
3) 合理選擇側(cè)芯尺寸、偏移量 R 及螺旋周期 Λ ,實現(xiàn)側(cè)芯中高階模式的高損耗特性。
通過滿足 QPM 條件和側(cè)芯高損耗特性,可以將中央纖芯的高階模式耦合到側(cè)芯從而被損耗掉,只留下基模穩(wěn)定傳輸。而利用特性 1),使中央纖芯基模與側(cè)芯模式發(fā)生部分耦合,可方便地控制基模的相速度與色散特性[1]。
三、手性光纖激光器的發(fā)展
Michigan 大學超快光學研究中心為了驗證3C光纖的單模傳輸特性,他們以芯徑30 μm 的單模光纖(SMF)和中央纖芯芯徑 34 μm 的3C光纖做對比模擬,均用只有 12.5%的光功率與基模匹配的光源進行激勵,經(jīng)過 20cm 左右距離的傳播,兩根光纖都只剩下 12.5%的功率,說明纖芯中只剩下基模傳輸,其余模式均損耗掉[9]。這一結(jié)果從理論上證實了3C 光纖等效于標準單模光纖,具有單模傳輸特性。為了進一步驗證模擬結(jié)果,Liu 等[8]根據(jù)相關參數(shù)制備出中央纖芯芯徑 35 μm 、側(cè)芯芯徑 12 μm 的3C光纖,這也是一根無源 3C光纖,同時參照模擬方法對其進行測試,得到該光纖在 1550 nm 處輸出光斑為基模,光斑光束質(zhì)量因子 M2=1.03,且該光纖的基模損耗為 0.095 dB/m,近乎無損耗地在纖芯中傳輸。這是世界上*證明3C光纖具有穩(wěn)定單模傳輸特性的實驗,具有重大意義。此外,實驗還發(fā)現(xiàn)該光纖具有很好的保偏特性,消光比達到了 34 dB。
2008 年,該實驗室制備出摻鐿雙包層3C光纖,其中,中央纖芯直徑為 33 μm ,數(shù)值孔徑(NA)為 0.06;側(cè)芯直徑為 16 μm ,NA為0.1;側(cè)芯螺旋周期 Λ 為 7.4 mm,兩芯邊到邊距離為 4 μm [6]。利用該有源光纖搭建激光器系統(tǒng),得到了很好的實驗結(jié)果。實驗裝置采用法布里-珀羅(F-P)諧振腔,尾端的高反鏡對反射光沒有任何模式選擇功能,光纖寬松盤繞,不會起到模式選擇作用。用 915 nm 激光二極管(LD)抽運有源光纖,在 1066 nm 處得到了 37 W激光輸出,斜率效率達 75%,激光閾值功率為 6 W,輸出光斑證實為基模[6]。該實驗進一步驗證了3C光纖的*性,說明該光纖可以像普通光纖一樣作為激光器的增益介質(zhì)使用,所構(gòu)成的光纖激光器具有高斜率效率和低閾值功率的優(yōu)點,且輸出的光束質(zhì)量相比 LMA 光纖得到了較大的改善[1]。
圖5. 33um 3C光纖實驗及結(jié)果
在 2009 年以雙包層摻鐿3C光纖搭建放大系統(tǒng)來探究其放大特性[10]。該實驗得到了 250 W 的連續(xù)功率輸出和150W輸出脈沖 10 ns,脈沖能量達到0.6mJ,峰值功率60kW,放大斜率效率達到 74%。同樣,在所有功率水平下,系統(tǒng)輸出光斑均為單模。
2010 年,該團隊將3C光纖應用于主振蕩功率放大(MOPA)結(jié)構(gòu)中來提升系統(tǒng)輸出功率[11]。實驗以2.7 m 長空氣包層摻鐿 3C光纖為功率放大器的增益介質(zhì),用 2.2 W 信號光激勵該光纖,實現(xiàn)了 511 W 的MOPA 結(jié)構(gòu)功率輸出,放大器斜率效率為 70%,同時觀測到輸出光束為單頻單橫模的線偏振光,具有大于 15 dB 的消光比[1]。
2012年Michigan 大學超快光學研究中心Thomas Sosnowski等人[12]通過33/250um 3C光纖實現(xiàn)了257W,200kHz,8.5ns,1.2mJ脈沖;86.5uJ,575kW峰值功率脈沖,以及利用55um 3C光纖實現(xiàn)了41W,8.3mJ,640kW的高能量脈沖輸出。
圖6. 33/250um 3C光纖輸出257W,200kHz,8.5ns,1.2mJ脈沖
圖7. 33/250um 3C光纖輸出86.5uJ,575kW峰值功率脈沖
圖8. 55um 3C光纖實現(xiàn)了41W,8.3mJ,640kW的高能量脈沖輸出
2013 年,立陶宛物理科學與技術(shù)中心的 ?eludevicius[13]通過搭建飛秒光纖啁啾脈沖放大(CPA)系統(tǒng)來提升輸出功率,該系統(tǒng)中的功率放大裝置采用3C光纖為增益介質(zhì)。實驗得到了 50 μJ 的脈沖能量,400 fs 的脈沖,輸出光斑為近似衍射極限,光束質(zhì)量因子1.1。
圖9. 3C光纖實現(xiàn)飛秒脈沖放大
2018年Carnegie Mellon 大學的Jinxu Bai等人[14]用15mW,25ns,150nJ,100kHz,1064nm種子源通過兩級2.5m和3m的3C光纖放大,獲得了121.2W,單脈沖能量12mJ,峰值功率50kW,M2<1.2脈沖輸出。
圖10. 級聯(lián)3C光纖輸出高功率、高能量脈沖
2019年,Sven Hochheim等人用nLight的Yb700-34/250的3C光纖,制作了用于引力波探測的,100W單頻單模保偏光纖放大器。
圖11. 百瓦單頻單模保偏光纖放大器
以nLight Corporation出品的3C手性耦合芯光纖為例,中央芯33um,側(cè)芯3um,包層250um,1.8dB/m@920nm泵浦吸收率,可實現(xiàn)2mJ脈沖和300kW脈沖輸出,M2<1.15,系統(tǒng)運行4500小時。[15]
圖12. 33um nLight3C光纖和數(shù)值模擬模式損耗
圖13. 以nLight3C增益光纖獲得的光纖激光的光束質(zhì)量
3C光纖除了能夠?qū)崿F(xiàn)穩(wěn)定的單模傳輸外,根據(jù)其特殊結(jié)構(gòu),我們預測該光纖還能夠抑制某些非線性效應。例如,利用中央纖芯基模與側(cè)芯模式選擇性耦合的特點,使基模某一偏振態(tài)耦合進側(cè)芯,這樣經(jīng)反射回來的偏振態(tài)便與原偏振態(tài)相反,從而有效抑制受激布里淵散射(SBS);經(jīng)過特殊結(jié)構(gòu)設計的 CCC 光纖,其透射譜具有一定范圍的波長抑制區(qū)域,將該抑制區(qū)與斯托克斯 SRS 增益譜的峰值區(qū)相重合,便能有效抑制SRS 效應[16];同時改變波長抑制區(qū)的范圍,還能實現(xiàn)對摻鐿光纖激光器和放大器的波長選擇。CCC 光纖理論分析還表明其輸出光束攜帶有角動量,因此可以預見 CCC 光纖能夠?qū)崿F(xiàn)顆粒俘獲與操縱、通信、計算和多維空間中的信息編碼等新型應用[17]。
四、總結(jié)及展望
總之,3C光纖的特點可總結(jié)為:
無需彎曲損耗保持良好的基模和偏振態(tài)輸出;
有效抑制脈沖功率放大過程中的非線性效應;
可實現(xiàn)高能量、高峰值功率的脈沖輸出。
基于以上的特性,脈沖光纖激光器的諸多光學指標可以得到較大的提升,進而滿足現(xiàn)如今科研與工業(yè)對品質(zhì)光源提出的多方面要求。此外,3C光纖結(jié)構(gòu)還可以控制非線性效應、實現(xiàn)通信等特殊功能。3C結(jié)構(gòu)能夠?qū)崿F(xiàn)的其他新型功能還有待我們的進一步研究,可以肯定的是,3C光纖無論在科學研究還是實際應用領域,都具有非常重要的意義及廣闊的發(fā)展前景。
參考文獻